$\beta^{2}=24.4 \mathrm{oe}^{2}$ when the protons are situated on $\mathrm{F}-\mathrm{F}$ lines. Proton deviation from $\mathrm{F}-\mathrm{F}$ directions (the magnitude of the intramolecular distance $r(\mathrm{~F}-\mathrm{H})$ being preserved) lessen the theoretical values for $\beta^{2}$ so that with $\mathrm{H}-\mathrm{F}-\mathrm{F}$ angles exceeding $20^{\circ} \beta^{2}$ becomes less than the lower limit of its possible values. To summarize, it may be said that, according to the n.m.r. data, the protons in solid HF are situated at a distance of $(0.95 \pm 0.03) \AA$ from the F atoms, involving a possible deviation from the F-F line not exceeding $10^{\circ}$.
It is also worthy of mention that according to the empirical formula of Pimentel \& McClellan (1960), with $\mathrm{F}-\mathrm{F}$ equal to $2.49 \AA$, the $\mathrm{F}-\mathrm{H}$ bond length should approximately equal $1.02 \AA$, which is in agreement with our $r(\mathrm{H}-\mathrm{F})$ value in solid hydrogen fluoride.

The authors are grateful to Dr L. M. Avkhutsky for his aid in recording the spectra.

## References

Atosi, M. \& Lipscomb, W. H. (1954). Acta Cryst. 7, 173. El Saffar, Z. M. (1966). J. Chem. Phys. 45, 4643.
Pake. G. (1948). J. Chem. Phys. 16, 327.
Pedersen, B. (1964). J. Chem. Phys. 41, 122.
Pedersen, B. (1968). Acta Chem. Scand. 22, 444.
Pimentel, G. C. \& McClellan, A. L. (1960). The Hydrogen Bond. San Francisco: Freeman.
Sutton, L. E. (1958). Interatomic Distances, Special Publication No. 11. London: The Chemical Society.
VanaVleck J.F. (1948). Phys. Rev. 74, 1168.

## Acta Cryst. (1971). B27, 1678

The crystal structure of $\mathrm{POBr}_{3}$ : space group and refinement by least squares.* By Lieselotte K. Templeton
and David H. Templeton, Lawrence Radiation Laboratory and Department of Chemistry, University of California, Berkeley, California 94720, U.S.A.
(Received 4 December 1970)
Contrary to an earlier report, the X-ray diffraction data for $\mathrm{POBr}_{3}$ are consistent with space group Pnma.

Olie \& Mijlhoff (1969) (referred to below as OM) reported a crystal structure for phosphoryl bromide, $\mathrm{POBr}_{3}$, which had been refined in space group $P n 2_{1} a$, but which deviated from Pnma by no more than $0.08 \AA$. OM stated that refinement in Pnma (with a block-diagonal least-squares program) 'proved to be disastrous' and that ' $R$ did not drop below $36 \%$ ', whereas (with anisotropic thermal parameters) $R$ was reduced to $11 \cdot 3 \%$ in $P n 2_{1} a$. We found it incredible that one could not get approximately as good agreement in space group Pnma as in $P n 2_{1} a$ with such slight deviations from the higher symmetry. Indeed, calculations we have made with the data of OM have reduced $R$ below $11.3 \%$ in both space groups. We must conclude that there was some defect in the program used by OM or some error in using it.

Dr Olie kindly gave us a list of 432 non-zero structure factors. We refined the structure using the CDC-6600 computer and the full-matrix least-squares program of Dr Allan Zalkin of this laboratory. Scattering factors for neutral atoms were taken from Cromer \& Waber (1965) with dispersion corrections for Br and P from Cromer (1965). OM used slightly different scattering factors and apparently neglected the dispersion corrections, but this difference certainly is not the origin of the divergence of our results. We assigned equal weights to the reflections for lack of knowledge of the experimental accuracies. The cell dimensions of OM were used: $a=9.467(6), b=9.938(6)$, $c=6 \cdot 192(3) \AA$.
Starting with coordinates similar to those reported by OM (but naturally with $\mathrm{Br}(1)$ and $\operatorname{Br}(3)$ equivalent), four cycles of refinement in Pnma with individual isotropic thermal parameters reduced $R=\sum|\Delta F| / \sum\left|F_{o}\right|$ to 0.192 Further cycles yielded no significant improvement. With

[^0]individual anisotropic thermal parameters, eight cycles reduced $R$ to $0 \cdot 110$ and $R_{2}=\left[\sum(\Delta F)^{2} / \sum F_{o}^{2}\right]^{1 / 2}$ to $0 \cdot 128$. The final shifts in no case exceeded $10^{-3}$ times the respective estimated standard deviation. The resulting parameters are listed in Table 1 and the molecular dimensions are compared in Tables 2 and 3 with those found with the other space group. Observed and calculated structure factors (multiplied by 6) are listed in Table 4.

Table 1. Final parameters in space group Pnma

|  | $\operatorname{Br}(1)$ | $\mathrm{Br}(2)$ | P | 0 |
| :---: | :---: | :---: | :---: | :---: |
| $x$ | $0 \cdot 3469$ (4) | $0 \cdot 4801$ (6) | 0.3102 (10) | $0 \cdot 174$ (3) |
| $y$ | 0.0790 (3) | 4 | $\frac{1}{4}$ |  |
| $z$ | 0.1799 (5) | $0 \cdot 6096$ (8) | $0 \cdot 3799$ (14) | $0 \cdot 494$ (4) |
| $B_{11}{ }^{*}$ | $7 \cdot 1$ (2) | $5 \cdot 0$ (3) | $2 \cdot 5$ (4) | 4 (1) |
| $B_{22}$ | $2 \cdot 6$ (1) | $5 \cdot 8$ (2) | $2 \cdot 2$ (3) | 6 (2) |
| $B_{33}$ | $4 \cdot 2$ (1) | $3 \cdot 3$ (2) | $2 \cdot 4$ (3) | 3 (1) |
| $B_{12}$ | -0.5 (1) | 0 | 0 | 0 |
| $B_{13}$ | $0 \cdot 8$ (2) | -1.6(2) | $0 \cdot 5$ (4) | 2 (1) |
| $B_{23}$ | -1.2 (1) | 0 | 0 | 0 |

* The temperature factor is $\exp \left(-\sum_{i} \sum_{j} h_{i} h_{j} b_{i} b_{j} B_{i j} / 4\right)$.

Table 2. Bond distances

|  | Pnma | $P n 2{ }_{1} a$ |  |
| :---: | :---: | :---: | :---: |
|  | This work | This work | OM |
| $\mathrm{P}-\mathrm{Br}(1)$ | 2.131 (6) $\AA$ | $2 \cdot 118$ (21) $\AA$ | $2 \cdot 131$ (11) $\AA$ |
| $\mathrm{P}-\mathrm{Br}(2)$ | $2 \cdot 147$ (10) | $2 \cdot 148$ (11) | $2 \cdot 140$ (6) |
| $\mathrm{P}-\mathrm{Br}(3)$ | (2.131) | $2 \cdot 147$ (17) | $2 \cdot 150$ (11) |
| P-O | $1 \cdot 470$ (29) | 1.445 (32) | $1 \cdot 442$ (18) |
| O---Br* | 3.065 (27) | 3.092 (29) | 3.08 (2) |

Table 3. Bond angles

|  | Pnma | $P n{ }_{1} a$ |  |
| :---: | :---: | :---: | :---: |
|  | This work | This work | OM |
| $\mathrm{Br}(1)-\mathrm{P}-\mathrm{Br}(2)$ | 105.3 (3) ${ }^{\circ}$ | $106 \cdot 2(6)^{\circ}$ | $106 \cdot 3(4)^{\circ}$ |
| $\mathrm{Br}(1)-\mathrm{P}-\mathrm{Br}(3)$ | $105 \cdot 8$ (2) | $105 \cdot 7$ (8) | $105 \cdot 1$ (3) |
| $\mathrm{Br}(2)-\mathrm{P}-\mathrm{Br}(3)$ | (105.3) | $103 \cdot 5$ (7) | $105 \cdot 3$ (4) |
| $\mathrm{Br}(1)-\mathrm{P}-\mathrm{O}$ | $115 \cdot 0$ (6) | 118.3 (28) | $115 \cdot 4$ (17) |
| $\mathrm{Br}(2)-\mathrm{P}-\mathrm{O}$ | $109 \cdot 8$ (12) | $109 \cdot 6$ (14) | 109.5 (8) |
| $\mathrm{Br}(3)-\mathrm{P}-\mathrm{O}$ | (115.0) | $112 \cdot 3$ (25) | 114.6 (18) |

Table 4. Observed and calculated structure factors $(\times 6)$


In space group $\mathrm{Pn}_{2}{ }_{1} a$ one expects strong correlation between the parameters of $\operatorname{Br}(1)$ and $\operatorname{Br}(3)$, especially when these atoms are given independent anisotropic thermal parameters, and refinement difficulty would not be unexpected. However, refinement in this space group (with 45 independent parameters rather than the 28 used in Pnma) reduced $R$ to $0 \cdot 103$ and $R_{2}$ to $0 \cdot 119$ without incident except considerably slower convergence than we achieved in Pnma. We started with the coordinates of OM and the thermal parameters listed in Table 1. The resulting coordinates correspond to bond distances and angles less symmetrical than those found in space group Pnma, and the thermal parameters correspond to more asymmetric
motion. We regard these results to be unacceptable as a plausible model of the molecular structure, and we do not report the coordinates because we have no confidence in them.*

An examination of the discrepancies among the observed and calculated structure factors (for Pnma) revealed 11 that were larger than 15 electrons. Refinement in Pnma after removal of these 11 reflections resulted in $R=0.097$, $R_{2}=0 \cdot 106$, and a bond distance $\mathrm{P}-\mathrm{O}=1 \cdot 49(2) \AA$. This sensitivity of the result to deletion of data suggests that more detailed analysis of this data set is unjustified without more specific knowledge of the accuracy of individual measurements, and that the standard deviations reported in this note are not to be taken too literally. The 11 reflections in question include the 10 which also gave the worst agreement in space group $P_{n} 2_{1} a$, and therefore their poor agreement in Pnma cannot be taken as evidence for the non-centric group.
We conclude that there is no reason to reject Pnma as the correct space group, and that this description should be used unless and until some better evidence to the contrary is found.

Note added by Dr Olie, 3 May 1971: The refinement of our data by the Templetons shows that the conclusions drawn with respect to the molecular structure and intermolecular interactions are independent of the choice of $P n 2{ }_{1} a$ or Pnma as the proper space group. Based on the information we have at present, we have no valid criterion for making a choice; therefore, the conclusion in the final lines of the Templetons' paper may be inverted to: 'We conclude that there is no reason to accept Pnma as the correct space group, and that this description should not be used unless and until some better evidence $\cdots$ is found'.
In the case of $\mathrm{POCl}_{3}(\mathrm{Olie}, 1971)$, which has an analogous structure, we found, using photographic data weighting according to Cruickshank (1961) that the centric group could still be rejected on a $5 \%$ level.

* To anticipate a likely question, we report that the $R$ test of Hamilton (1965), if applied to the $R_{2}$ ratio $0 \cdot 128 / 0 \cdot 119=1 \cdot 08$, gives the result that the centric group can be rejected at the 0.005 level. In our opinion the presence of systematic errors and incorrect weights makes this test inappropriate in the present case (cf. Ford \& Rollett, 1970).


## References

Cromer, D. T. (1965). Acta Cryst. 18, 77.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104. Cruickshank, D. W. J. (1961). In Computing Methods and the Phase Problem in X-ray Crystal Analysis. Oxford: Pergamon Press.
Ford, G. C. \& Rollett, J. S. (1970). Acta Cryst. A 26, 162. Hamilton, W. C. (1965). Acta Cryst. 18, 502.
Olie, K. (1971), Acta Cryst. B27, 1459.
Olie, K. \& Millhoff, F. C. (1969). Acta Cryst. B25, 974.


[^0]:    * Work done under the auspices of the U.S. Atomic Energy Commission.

